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Experiments to determine the value of Taylor’s longitudinal diffusivity in 
turbulent flows in open channels and circular pipes have produced results which 
are in many cases inconsistent with one another and with theoretical estimates 
due respectively to Elder (1959) and Taylor (1954). Neither is there general 
agreement on when Taylor’s theory becomes applicable. In  an atbempt to clarify 
the discrepancies two well-known sets of experiments by Fischer (1966) and 
Taylor (1954) are re-examined by using a natural procedure which, it is argued, 
has certain advantages over more usual methods. It is shown that Fischer’s 
observations in an open channel were not made a t  a sufficient distance down- 
stream from the point of injection for Taylor’s theory to apply but that they are 
consistent with a description of the early stages of the dispersion process due to 
Sullivan (1968). It is subsequently argued that these observations suggest that 
Elder’s estimate of the diffusivity is too low for two reasons. The first is the error 
caused by assuming the existence of an eddy diffusivity calculated by means of 
Reynolds analogy and the second is the neglect of the viscous sublayer. On the 
other hand it is shown that some of Taylor’s observations in a circular pipe are 
consistent with his theory, although the values of the diffusivity which best 
fit the data are about 25% higher than Taylor’s estimate, and it is suggested 
that this is for the same reasons as in the open channel. The paper concludes 
with a discussion of the effect of the viscous sublayer on the value of the 
longitudinal diffusivity. Partly on the basis of an approximate model it is 
argued that theoretical calculations which ignore the viscous sublayer are too 
low by amounts which depend on the Reynolds and Schmidt numbers and can 
be of the order of 20 yo. 

1. Introduction 
This paper deals with the longitudinal dispersion of a passive contaminant 

in turbulent flow through circular pipes, and open channels of uniform rectangular 
cross-section. Throughout, godenotes the discharge velocity, z measures distance 
in the longitudinal direction from a fixed cross-section, y and z are co-ordinates 
in the plane of the cross-section and t measures time. The distribution of con- 
centration is denoted by C(z, y, z, t )  and its mean over a cross-section by Cm(q t ) .  

For sufficiently large t ,  Taylor (1954) showed that 

[(. - 2”) - U0(t - t * ) ] Z  C M C,,cc (t-t*)-&exp - ( 4K0(t - t*) 
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where x*, t* and KO are constants. KO will be referred to as the longitudinal 
diffusivity since (1.1) is consistent with the hypothesis that C, is being diffused 
longitudinally across every cross-section at a rate - K,aC,/az per unit area. 

The values of x* and t* depend on the choices of the station x = 0 and the time 
t = 0. With the natural choices of x = 0 as the initial position of the centre of 
gravity of the cloud and t = 0 as the time of injection, it can be shown (Chatwin 
1970) that the value of x* depends on the initial distribution of concentration 
in such a way that x* = 0 if this is uniform over every cross-section. With the 
same choice of x = 0 and t = 0 there are two contributions to the value oft*. 
One depends on the initial distribution, and the second, normally by far the 
greater, is independent of the initial distribution and depends only on the varia- 
t,ion of flow properties over the cross-section. A formula for this contribution to 
t* is given in Chatwin (1970). However, the values of x* and t* are difficult to 
estimate accurately for any particular experiment, and, as will be argued in Q 3, 
it is usually sufficient in the analysis of experiments to approximate (1.1) by 

C z C,cc t-texp 

This is a good approximation for large values of t/t* except very near the peak 

Calculations of the value of KO have been presented for a circular pipe of 
of c,. 

radius a (Taylor 1954) with the result 

KO M lO-lau,, (1.3) 

KO M 5*9hu,, (1.4) 

and for an open channel of depth h (Elder 1959) with the result 

where u* is the friction velocity. In  both calculations the existence of an eddy 
diffusivity calculated by means of Reynolds analogy was assumed and the 
viscous sublayers were ignored. In  addition Elder ignored the variation of the 
turbulence properties across the width of the channel although it is now known 
that this is unjustified in many natural channels, in which the value of KO may 
consequently be much higher than that given in (1.4) (Fischer 1966). 

Experiments on longitudinal dispersion have normally been designed to 
answer one or more of the following questions. 

(i) Is it true, as in (1.1) and (1.2), that C, is a Gaussian function of x for suf- 
ficiently large t?  

(ii) If so, how large is ‘sufficiently large t ’? 
(iii) What is the appropriate value of KO? 

The answer to (i) is generally accepted to be in the affirmative and it is the answers 
to (ii) and (iii) which have lately aroused most interest and controversy (see 
Fischer 1966, p. 15). In  an attempt to elucidate the controversy, some experi- 
ments by Taylor (1954) with a circular pipe and by Fischer (1966) with an open 
channel are re-examined in this paper and the conclusions arrived at differ 
somewhat from those originally put forward. An attempt to explain some of the 
differences is made which stresses the role of the viscous sublayer. 
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Both Taylor and Pischer made use of an approximation, which will be called 
the ‘frozen-cloud approximation’ in this paper, and it was felt necessary to 
discuss the errors introduced by this before examining the experimental results. 
This is the subject of 9 2. 

2. The frozen-cloud approximation and why it is unnecessary 
A common technique in longitudinal dispersion experiments in turbulent 

flows is to place one or more probes at  aJized cross-section (say a t  2 = xo) and to 
measure the response as a function of t  as the cloud of contaminant passes the 
probe. By suitable calibration this technique gives a direct record of Cm(zo,t). 
If xo is sufficiently large the bulk of the cloud of contaminant will pass the probe 
at  values oft  so that (1.2) holds approximately. Hence? 

where A is a constant proportional to the total quantity of contaminant. 
Now (2.1) shows that the graph of C,(zo,t) against t is not symmetrical about 

t = x*/U,, because of the factors t-1 (in the argument of the exponential) and t-4 
(multiplying the exponential). This asymmetry is one manifestation of the fact 
that the portions of the cloud of contaminant which pass the probe first are 
‘younger ’ than those which pass later. Nevertheless, it has often been argued 
that this asymmetry may be small if the speed U, a t  which the cloud is being 
swept past the probe is much greater than the speed at  which the cloud is evolving. 
The evolution is completely described as a diffusion process with diffusivity KO. 
Thus at  time t, the speed of evolution is, on dimensional grounds, a multiple of 
(Ko/t)t. Thus at time t = xo/U, a characteristic speed of evolution is (KoUo/zo)4, 
and hence, if U, % (KoUo/zo)*, that is if 

the graph of Cm(zo, t ) ,  given by (2.1), against t might be nearly symmetrical. If 
so, then instead of (2.1), 

(KoIUoz,)~ < 1, (2.2) 

where z’-zo = zo- ?Jot. It is the approximation (2.3) or (2.4) that will be called 
the ‘frozen-cloud approximation’. It is due to Taylor (1954). Its advantage is 
that it is easier to analyze a Gaussian curve like (2.3) than a relatively complicated 
one l i e  (2.1). 

Nevertheless, since the arguments in the exponentials of (2.1) and (2.3) are 
different, the error involved in the approximation will always be substantial 
sufficiently far from the value t = xo/Uo. The relative error is 

t The argument of this section remains valid (with obvious changes in notation) if it is 
based on (l . l) ,  rather than (1.2). 

44-2 
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Using (2.1) and (2 .3 )  it is found that 

where 

As is well-known (2K0x0/Q4 is the standard deviation, v, of the Gaussian curve 
(1.2) at time zo/Uo. Hence X is (z' - xo)/a and is the variable that would be used 
were the functions Cm(xo, t) and C,n(x', xo/Uo) expressed in standard measure. 
Furthermore, E is equal to v/xo, showing that ( 2 . 2 )  (which is equivalent to 
E < 1) implies that the standard deviation of the cloud is much smaller than the 
distance it has travelled. If e < 1 and if lcX31 is also small the relative error given 
by (2.5) is approximately 

and is therefore small. However, for values of X of O ( d )  or greater the ex- 
ponential in (2.5) becomes substantially different from one. Therefore the 
argument leading to (2.2) breaks down essenbially because it ignores those parts 
of the cloud that are observed ab values of t substantially different from xo/Uo. 
Figure 1 plots the relative error given by (2.5) for three values of e, and these 
graphs confirm the points above. 

Thus any deduction from experiments in which the frozen-cloud approximation 
is invoked must be examined carefully if the values of Cm(xo, t) in the tails of the 

$E(X - X3)  

FIGURE 1. The relative error caused by use of the frozen-cloud approximation for three 
values of E = ( 2 K 0 / U 0 z , ) ~ .  -, E = 0.10; - - - - -, e = 0.05; -.-.-., E = 0.02. 
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distribution are important. This is true in calculations of the integral moments of 
the distribution, although it is known (Fischer 1966) that the use of khe frozen- 
cloud approximation in relating the second moments of the observed and approxi- 
mate distributions is valid if E is small. But higher moments than the second are 
not so simply related so that, for example, the scheme outlined by Chatwin (1970) 
in which non-Gaussian curves observed for fixed time are described in terms of 
their integral moments needs re-examination if it is to apply to non-Gaussian 
curves observed at  a fixed probe. 

The preceding discussion emphasizes the care with which the frozen-cloud 
approximation should be used. It will now be shown that its use is not normally 
necessary, since there is a natural way of analyzing the values of C,,(x,,t) in 
order to answer the questions (i), (ii) and (iii) of 8 1 which does not use the frozen- 
cloud approximation. 

For, if (2.1) holds, 

The value of A can be estimated from the values of CTn(xo, t )  near and at  the peak. 
The left-hand side of (2.7) can then be calculated and plotted against t. If the 
graph is a straight line question (i) is answered affirmatively and one has an 
upper limit on the minimum value of t  for which (1.2) holds. Furthermore the 
values of Uo and KO can be estimated from the slope and intercept of the straight 
line, assuming x,, the distance of the probe downstream from the poinC of in- 
jection, is known. On the other hand if the graph is not a straight line nothing can 
be said about questions (i) and (iii) but one has a lower limit on the value of t  
for which (1.2) holds. 

Applications of the procedure just outlined will be given in the next two sections 
but one or two general comments seem appropriate here. First the general shape 
of the graph of [tlog,{A/C,tt}]* against t is not very sensitive to the value of A .  
Only those points near t = xo/Uo are visibly affected by a change in A of a few 
percent and the requirement that the graph passes smoothly through such points 
enables A to be determined to within 1 or 2%. The second point is that the 
value of C,is extremely sensitive to thevalue of Uoand also, but to a lesser extent, 
to that of KO. In  fact errors AA, AKo and AU, in the values of A ,  K and U, cause 
an error AC, in the value of C, determined by (2.1), which satisfies to first order 

AC,- AA X 2  AK, XAU, +--, ---+ C,, A 2 ( 1 - ~ X )  KO E Uo 
___ 

where X and E are defined in (2.6). For a typical value of E of 0.04 a 1 yo error in 
Uo causes a 25 % error in C, at  X = 1 and a 100 yo error in C, a t  X = 4. For the 
same value of E a 1 yo error in KO causes about a 0.5 yo error in C, at  X = 1 but 
about a 9 % error at  X = 4. The present procedure has the important advantage 
that the values of Uo and KO can be estimated to provide the best fit to all the 
data in contrast to some other methods which only use the value of C,,, at  one 
or two points. 
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3. Analysis of experiments by Fischer 
Fischer (1966) conducted a large number of careful and detailed experiments in 

open channels of various cross-sections. Among these were several in a laboratory 
flume of rectangular cross-section, llOcm wide, in which the flow properties 
varied little across the width of the channel. Fischer therefore argued that the 
experimental conditions were those under which Elder’s calculation leading to 
the result (1.4) were made. 

FIGURE 2. The data from series 2600 of Fischer (1966) plotted according to the procedure 
discussed in the text. The observations were made at four stations a t  706, 1406,2106 and 
2806cm downstream from the point of injection. The broken lines are determined by 
U,, = 26*9cm/sec and KO = 117 cma/sec- the values given by Fischer. The full lines fit tshe 
front portion of each curve with values of U and K given in table 1. 

In  series 2600 of his experiments the values of h, U, and u* were estimated as 
6.9 cm, 26.9 cm/sec and 1-36 cm/sec respectively and Cm(zo, t )  was determined a t  
four values of z,,, viz. = 706cm, 1406cm, 2106cm, and 2806cm. The results of 
applying the procedure based on (1.2) and described above to the four sets of 
data are shown in figure 2. 

The most striking fact is that none of the curves is a straight line so that the 
data cannot be fitted by curves of the form (2.1). It is therefore concluded that 
insufficient time has elapsed (or equivalently that the probes are at aninsufficient 
distance downstream) for (2.1) to be a correct description. (The same conclusions 
are true for series 2700 of Fischer’s experiments although the curves are not 
given here.) This is in contrast to E’ischer’s interpretation of the same data. He 
argued that the final bwo experiments are consistent with (2.1) with a value of 
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Roof 117 cm2/sect (and Uo as 26-9 cmlsec). The straight lines that would be given 
were this true are shown as dashed lines in figure 2. 

All four curves in figure 2 differ from straight lines in that they curve towards 
the axis for t greater than xo/Uo indicating that they decay more slowly than if 
they were Gaussian. Details of the variation of C(x, y, z, t )  over the depth are 
given in Fischer (1966). These show, first, that at  large values o f t  the con- 
taminant is concentrated near the bottom of the channel and, secondly, that 
it is in this region that the differences between C(x, y, z, t )  and the values predicted 
by the analysis leading to (1.4) are most marked. Both these points suggest that 
the reason that the asymptotic state has not been reached is connected with the 
mechanics of the dispersion process in the region near the bottom of the channel, 
perhaps in the viscous sublayer. 

For times less than xo/Uo which is very nearly the time at which Cm(xo, t )  
attains its peak, each of the four curves in figure 2 is straight. Therefore the 
forward portion of the graph of each Cm(xo, t )  (but only the forward portion) can 
be described by a curve of the form (2.1), viz. 

where, as table 1 shows, the values of U and K differ for each curve and are 
therefore not in general equal to Uo and KO respectively. It is possible to in- 
terpret these observations in terms of a description of the early stages of the 
dispersion process in open channels due to Sullivan (1968). 

2 0  (om) 706 1406 2106 2806 
A 511.3 671.2 921.5 995.2 

U (cmjsec) 30.4 28.2 27.9 27.8 
K (cm2/sec) 16.9 46.9 60.7 63.0 

TABLE 1. Values of A used in plotting the data of figure 2 together with the values of U 
and K for the full lines which fit the front portions of each curve 

Sullivan showed that prior to the period in which the whole graph of C,(x, t )  
is Gaussian there are two preliminary stages in which only the forward portion 
of the curve is Gaussian. 

The first of these stages exists for t such that 

1 5 tu,/h 6 4. ( 3 4  

During this period the forward portion of the graph of C,(x, t )  is almost wholly 
due to contaminant in the upper half of the channel, and provided tu,/h 2 1 
the material in this region has sampled all the region because of the relatively 
high intensity of vertical mixing there. On the other hand, experiments showed 
that provided tu,lh 5 4 relatively little of the material in the upper half of the 
flow which contributes to the forward portion of C,(x, t )  has dispersed into the 

t This estimate was based on equating the measured value of the second moment to 
2K,x,/U& the theoretical value given by (2.1), but this equation is incorrect since (2.1) is 
not applicable as the argument in the text shows. 
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slower-moving lower half of the flow-a region of relatively low intensity of 
vertical mixing. These arguments suggest and experiments confirm that, if 
(3.2) holds, the forward portion of the graph of C,(x, t)  is Gaussian with values 
of U and K determined solely by conditions in the upper half of the channel. 
Sullivan’s experiments showed that in this first stage 

U z l*lOU,, K z 0.0053u,h - -295 . (3.3) KY 1 
The same first stage should be observable in the curve of C,(x,, t )  provided 

1 5 x,u,/hUo 5 4. 

The first curve in figure 2 is such that xou,/hU, z 4.5, suggesting that the first 
stage has just finished. This is confirmed by the measured values of U and K 
given in table 1. The measured value of U ,  30.4cm/sec, is 1.13 times Fischer’s 
estimate of U,, 26.9 cmfsec. On the other hand the evidence of the later entries 
in table 1 is that U, is nearer 27.8 cm/sec and 30.4/27-8 = 1.09 which is just less 
than the value 1.10 given in (3.3). The value of K given by (3.3) is 6.11 cm2/sec 
in contrast to the measured value of 16-85cm/sec, which suggests that the 
transition from the first stage to a second stage is in progress. 

This second stage exists when the contaminant has had time to sample all 
the cross-section excluding the viscous sublayer and estimates suggest that this 
occurs for t such that 

When this is satisfied the forward portion of the graph of Cnl(x, t )  is almost wholly 
due to material not in the viscous sublayer, so that as in the first stage the 
forward portion is described by a Gaussian curve with values of U and K now 
determined by conditions in that part of the channel above the viscous sublayer. 
The value of U is equal to  the average of the longitudinal velocity in this region, 
and this varies from U, to 1-02U0 depending on the height of the viscous 
sublayer; the value of K should equal Elder’s value (1.4) if Reynolds analogy 
holds. 

The values of xou*/hU, for the last two curves of figure 2 are 15.4 and 20.5 
respectively so that the second stage description should apply. I n  fact the 
observed values of U are both close to 27.8 cmlsec (suggesting that U, lies between 
27.3 and 27*8cm/sec) and the values of K are 6.5hu, and 6*7hu, respectively 
suggesting that Elder’s estimate (1.4) should be amended to about 6*6hu,. If 
this is so the error in Elder’s estimate can be attributed to  the inadequacy of 
Reynolds analogy. 

In  the second stage the whole curve is not Gaussian because of the material 
in the slow-moving viscous sublayer which causes the curve of Cm(x, t)  to have 
a long tail, and so that of Cm(xo, t)  to decay more slowly than if it  were derived 
from a Gaussian curve. This is consistent with Pischer’s observations. During the 
whole of the second stage material is gradually diffusing across the boundary of 
the viscous sublayer where the intensity of lateral mixing is very low. Eventually, 
but it is difficult to quantify this word in view of the ignorance of the mechanics 
of the motion in the viscous sublayer, the whole curve will be described by (2.1). 

tu,lh 2 10. (3.4) 
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The final value of K will be greater than that in the second stage and an estimate 
of its value will be given in 8 5. What is certain is that any such estimate must 
involve consideration of the viscous sublayer. 

The conclusions of this section are not changed if Fischer's experiments are 
analyzed using (1.1) rather than (1.2), but it is worth describing how this is 
done since there are one or two points of interest. Equation (2.7) derived from 
(1.2) must now be replaced by the analogous expression derived from ( l . l ) ,  viz. 

[(t - t*) log,{A/C,(t - t*)3}]t = (3.5) 

and in order to plot the left-hand side against (t - t*), as the procedure described 
in 8 2 directs, an estimate of t* (but not x*) is necessary. This can be obtained 
from the expression given by Chatwin (1970). 

For the first curve in figure 2 the value oft", which here depends only on the 
flow properties in the upper half of the cross-section, is estimated to be 0-04 sec 
and Dhe plot of the left-hand side of (3.5) against (t-t*) is negligibly different 
from the first curve in figure 2. 

On the other hand the value oft* for the last two curves in figure 2 is determined 
by the flow properties in the whole cross-section excluding the viscous sublayer. 
A rough estimate of its value is 6sec, based on using the logarithmic velocity 
profile and Reynolds analogy over the whole cross-section (leading to errors 
which are difficult to  estimate and therefore difficult to reduce). With this value 
oft*, the new third and fourth curves in figure 2 are, except for a displacement 
of 6 sec, almost indistinguishable from the original ones. In  particular the for- 
ward portions of the curves are straight, with the same slopes as the originals. 

From any one of these two curves it is not possible to determine the values of 
U and K (which are not necessarily equal to U, and KO-see the remark after 
(3.1)) since the values of x* and t* are gnknown. However, since the shape of the 
curves is insensitive to the value oft*, the values oft where the curves intercept 
the time axis can be found from figure 2. In  fact t = 75-8 see for the third curve 
and t = 101.2 sec for the fourth curve. Therefore, using the known values of xo 
in (3.5), it follows that 

(3.6) } 
2106 - 75.8U = X" - Ut*, 

2806- 101.2U = x*- Ut*. 

Thus U = 27-56cm/sec which is close to the value determined earlier in this 
section. It may therefore be concluded that analysis on the basis of (1.2), rather 
than (1. I) ,  does not alter the estimated value of U (and hence of K )  in experiments 
like Fischer's. 

A value of (z* - Ut*) can be deduced from (3.6), but is not very reliable since 
it is the difference of two large quantities. In  order to determine X* and t*, data 
must be taken a t  several values of x,,. 
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4. Analysis of Taylor's experiments 
Taylor (1954) performed several experiments in a circular pipe with 

a = 0.476 cm. Figures 3 and 4 show the results of applying the procedure based 
on (1.2) and described in $ 2  to the data shown in figures 7 and 8 of Taylor's 
paper. The values of C, were read directly from Taylor's graphs and it was 
assumed that C, was zero at the extreme points recorded. 

3 

3 

1 - 
r*-. c u 

t 
P o  s 
& - u Y 

- I  

-2 

- 7  

FIGURE 3. The data from figure 7 of Taylor (1984) plotted according to the procedure dis- 
cussed in the text. The values of u*, xo and a are 12.65 cmisec, 322 cm and 0.476 cm. The full 
line is that given by Uo = 221 cmjsec and KO = 75cmz/sec. The broken line is that given by 
Taylor's values, U, = 222 cmjsec and KO = 70 cm2/sec. 

Two points of difference from the curves in figure 2 are evident. First the 
points are more scattered and second there is no general tendency for the 
curves in figures 3 and 4 to veer away from straight lines for t > xo/Uo as there 
was in figure 2. Indeed it seems reasonable to argue that both curves are straight 
within experimental error and the full lines in figures 3 and 4 are those which 
seem the  best fit. The dashed lines in figures 3 and 4 are those corresponding to 
the values of U, and KO given by Tay1or.t 

The fact that these curves can be fitted by straight lines is evidence that xo 
is sufficiently large €or the final asymptotic stage to have been reached. The values 
ofxou,/aUo for the data of figures 3 and 4 are 38.7 and 212-8 respectively.These 

t Taylor estimated KO by measuring the two values of t  at which C, attained one half of 
its peak value and then equating their difference to {4K0s,log, 2/U30}*, which is the result 
given by assuming the validity of the frozen-cloud approximation and using (2.3). 
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are much greater than 20.5, the maximum value of the corresponding parameter 
xou*/hU, recorded in Fischer’s experiments discussed in $ 3, where it was shown 
that the value of xou*/hU, determined the stage of development of Cm(xo, t )  
towards its final state (2.1). 

In the curve shown in figure 3, the value of K,/au, given by the full line is 
12-5 while that given by Taylor’s value is 11-6. The corresponding values for 
figure 4 are 13-7 and 12-8 respectively. The theoretical value (see (1.3)) is 10.1. 

FIGURE 4. The data from figure 8 of Taylor (1954) plotted according to the procedure dis- 
cussed in the text. The values of u*, q, and a are 8.45 cmisec, 1631 om and 0.476 cm. The 
full line is that given by U, = 137*8cm/sec and KO = 56cma/sec. The broken line is that 
given by Taylor’s values, Uo = 136 cm/sec and KO = 51.3cm2/sec. 

5. The effect of the viscous sublayer on KO 
The interpretations presented in the last two sections suggest that KO is greater 

than the estimates (1.3) and (1.4). It was shown in $ 3  that the evidence of 
Fischer’s experiments is that, in an open channel, at least some of this dis- 
crepancy is due to the ignoring of the viscous sublayer in the derivation of (1.4) 
and there is no reason why the same should not be true in a circular pipe. Some 
arguments are now presented to support this view. 

It is well-known (Taylor 1954, Batchelor 1966) that the longitudinal velocity 
of a marked fluid particle in an open channel of uniform cross-section or in a 
circular pipe, is a stationary random, function of t with mean U,. Hence, by 
stationarity 
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where the overbar denotes an ensemble mean. The value of K,  can be written 
in terms of R(6) in the following way: 

Now 

is a measure of the time taken for a fluid particle to sample the whole cross- 
section. The time taken to sample the part of the cross-section outside the viscous 
sublayer is, on dimensional grounds, of order a/u* in a circular pipe and h/u* in 
an open channel, and these times give values of K,  consistent with (1.3) and (1.4). 
But these times are not normally accurate estimates of the times taken t o  sample 
the whole cross-section since within the viscous sublayer the properties of the 
turbulence depend directly on the viscosity v, and the lateral mixing sufficiently 
near the wall is dominated by molecular processes whose intensity is measured 
by the molecular diffusivity K .  This suggests that the time taken to sample the 
whole cross-section is greater than a/.* or hlu, by an amount that increases as K 

decreases and as the height of the viscous sublayer increases (that is as the 
Reynolds number decreases). 

An estimate of the increase can be made if it is assumed that the lateral transfer 
of contaminant everywhere including the sublayer obeys the gradient law of 
diffusion with a diffusivity which is the sum of the molecular diffusivity K and 
an eddy diffusivity K~ calculated by means of Reynoldsanalogy. This assumption 
is not theoretically well-founded; in particular the lateral transfer of contaminant 
within the sublayer depends on K whereas the lateral transfer of momentum doe0 
not and this makes the validity of Reynolds analogy very unlikely. Nevertheless, 
similar assumptions have been made in heat transfer theory with reasonable 
agreement with experiments (Monin & Yaglom 1966, pp. 247-261). It seems 
worthwhile to pursue the same assumption here if only to produce a target to 
be shot down ! 

Consider an open channel of depth h. There are two contributions to the value 
of KO. The first is the direct effect of longitudinal diffusion with an estimated 
value of 0-07hu, (Elder 1959) which is small and negligibly affected by the sub- 
layer. The second is the effect of the interaction between lateral diffusion and 
longitudinal advection. If the gradient law of diffusion holds this can be written 
as an integral with respect to y where y = 0 is the wall and y = h the free surface; 
viz. 

where u(y) is the difference between the mean longitudinal velocity a t  height y 
and the discharge velocity U, (Ellison 1960). Thus, combining the two con- 
tributions. 

2 KO = 0.07hu, +;I dY ( /o’u(y’) dy’ )  . 
0 K + K T  

In evaluating (5.2) Elder assumed that K ~ ( Y )  was a parabolic function of y and 
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u ( y )  a logarithmic function of y throughout the channel, that is he ignored the 
change in these functions within the sublayer. However (5.2) can be written 

where 6 is the heigh$ of the viscous sublayer. Since S/h 4 1 and 4 1 if 
y > 6 the sum of the first two terms is approximately the value of K observed 
in Sullivan’s second stage. It was suggested in $ 3  that this is near to 6-6hu* 
(rather than 5*9hu, as suggested by Elder’s estimate (1.3)). Therefore 

The integral in (5.4) can be approximately evaluated by replacing u and KT 

by the first terms in their Maclaurin expansions provided S is consistently de- 
fined. Now 

and by Reynolds analogy, and data in Townsend (1956, pp. 220-l), 

(5.5) 

UIV’ 
~ ~ = - - - - - ~ 0 * 0 0 0 6 ~  

du/dy  

where u‘ and v‘ are the longitudinal and vertical components of the velocity 
fluctuation. On substituting in (5.4) and integrating it follows to first order that 

K O  z 6*6hu, { 1 +83*8 (~)2(-$)210gc[l+O~O006~~)3~]). - (5.7) 

A calculation that is similar in all respects can be made for a circular pipe with 
the result 

KO x lO.lau* ( 1 +27.5 (~)2(~)2~og,[l+0~O006(1~)3~]). - (5.8) 

The height of the viscous sublayer must on dimensional grounds be pro- 
portional t o  v/u,. The constant of proportionality depends on the particular 
criterion used to define 6, but a value of 5 is commonly used. Thus take 

6 = 5v/u*. 
In  Fischer’s experiments ( 9  3) 

U,/U* = 20.4, v/u* h = 1.07 x 

The value of K is not known but a typical value is 10-5cm2/sec. With these 
values (5.7) gives 

KO x 6*6h~,{1+ 0.17) (5.9) 

so that, with this model, the true value of KO is 17 % greater than that observed 
in Sullivan’s second stage, that is calculated with the sublayer neglected. 
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For Taylor’s experiments the same values of 6 and K substituted in (5.8) 
lead to 

for figure 3 and KO M lO*la~,( l+ 0.23}, 

for figure 4. These are about 10 yo lower than the values given by the full lines of 
figures 3 and 4. Two possible causes of the discrepancy are the inadequacy of 
the model used in this section to describe diffusion in the viscous sublayer and an 
error in the estimate (1.3) caused by the use of Reynolds analogy, equivalent 
to that which was suggested to exist in the open channel estimate, (1.4), and 
which was discussed in 0 3. 

It is therefore concluded that neglect of the viscous sublayer may well cause 
errors of the order of l0-20% in the calculated values of KO, and that these 
values may themselves have errors of the order of 10 yo if Reynolds analogy is 
assumed to hold in the bulk of the flow. 

KO z lO~lau*(1+0.12), 

I am grateful to Professor G.K.Batchelor for several conversations on the 
material discussed in 0 5, and to him and Professor H. B. Fischer for their com- 
ments on earlier drafts of this paper. 
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